
N89- 26601
An Intelligent User Interface for
Browsing Satellite Data Catalogs

Robert F. Cromp and Sharon Crook
Science Applications Research, Inc.
National Space Science Data Center
NASNGoddard Space Flight Center

Greenbelt, MD 20771

Abstract

A large scale domain-independent spatial data management expert system that
serves as a front-end to databases containing spatial data is described. This
system is unique for two reasons. First, it uses spatial search techniques to
generate a list of all the primary keys that fall within a user's spatial
constraints prior to invoking the database management system, thus
substantially decreasing the amount of time required to answer a user's query.
Second, a domain-independent query expert system uses a domain-specific rule
base to preprocess the user's English query, effectively mapping a broad class
of queries into a smaller subset that can be handled by a commercial natural
language processing system.

The methods used by the spatial search module and the query expert system are
explained, and the system architecture for the spatial data management expert
system is described.
Ultraviolet Explorer (WE) satellite, and results are given.

The system is applied to data from the International

1 Introduction

Large amounts of data from a variety of sources covering a multitude of
domains are stored in databases. Increasingly, these databases are becoming
more complex and intertwined. In addition, research involving this data often is
multidisciplinary in nature, requiring the researcher (scientist or manager) to
access multiple databases over a network of non-homogeneous computer
systems. Users are investing their important time in learning and recalling how
to use these systems. Unless a person has a pressing need to know an answer, a
system is not learned-the start-up time for learning how to use the system
outweighs the importance of the answer.

--
281 PRECEDING PAGE BLANK NOT FlLMED

I

The Intelligent Data Management (IDM) Project at the National Space Science
Data Center (NSSDC), NASA/Goddard Space Flight Center, has been involved over
the past few years in investigating, developing, and proving methods which
facilitate the accessing of databases for the user [4, 151. Our research has
concentrated on combining specially developed software with commercial
packages, and applying our systems to non-trivial domains.

The general domain-independent methodologies which the IDM research has
produced define the steps that are necessary for automatically developing an
intelligent user interface to access databases.
approach to creating a spatial data management expert system that serves as an
intelligent front-end to databases that contain spatial data. We believe this is
an important step in designing a system that researchers can use to access the
voluminous amounts of data that will be produced by on-going and future NASA
missions, such as IUE, Space Station, Space Telescope and Eos.

This paper reports on our

2 The Spatial Data Management Expert System Architecture

We have designed and implemented a large scale domain-independent spatial
data management expert system that provides answers to users' English queries.
The system integrates our in-house developed modules with various commercial
products.

Figure 2.1 shows the conceptual arrangement and data flow of the system. A
user enters his query in English, and optionally, by means of a graphics
interface, selects a set of spatial regions to which he wants to restrict his
query. The English portion of the query is passed through a query expert system
that uses a domain-specific rule base to preprocess the query for handling by
DataTalker, a commercial natural language database front-end marketed by
Natural Language, Incorporated [I 31. The query expert system channels a broad
class of queries into a smaller set which DataTalker is then able to process.
addition, the query expert system passes the region coordinates to a specially
designed spatial search module that returns a list of the primary keys of the
records in the database that fall within the selected regions.
passed an English query that is formed from the user's transformed query and
the set of primary keys.

In

DataTalker is

282

Answer
to Query

Figure 2.1: The overall system architecture for the spatial data management
expert system.

When DataTalker is installed on a machine, it is connected to a database
management system.
successfully parses a transformed query.
transparent to the user, and the format of the query results is controlled by
DataTalker.
message to the query expert system indicating so.

DataTalker automatically invokes the DBMS whenever it
The low-level database accessing is

If DataTalker cannot parse the query (see Section 4), it returns a

The Spatial Data Management Expert System causes DataTalker to store its
result in a file. The contents of this file are used to update a text window of
query results on the user's console.

If the user is not satisfied with the way his query is transformed or answered,
he can file an electronic performance report which is later reviewed by the

283

domain expert. The domain expert uses this information to guide the evolution
of the system with respect to the types of queries asked by the users.

3 Spatial Search

In order to answer queries about spatial data, we must be able to access the
information associated with those records quickly. A database is too slow for
this problem forcing the development of quicker methods for accessing data.
We chose quad trees and k-d trees as suitable data structures for answering
spatial queries about records. The implementation of these data structures
allows us to perform such tasks as finding the nearest neighbor to a given
coordinate and determining all records within a certain region.
the answer to such spatial queries, we can return the appropriate primary
database keys to the expert system which uses the keys to gain any other
necessary information from the database.

After finding

3.1 Tree Construction

Our implementation of these two data structures relies on the spatial
relationships among records based on coordinate values for a two dimensional
space, for example right ascension and declination. We use similar methods to
build each of these two types of trees from a set of n records, { x i ,x2, . . ., Xn}.
In order to create a quad tree, we choose a point, Xi, from this set. This point
determines the root node of the tree and divides the space into four quadrants
based on the coordinate values of that point. Each quadrant is represented by
one of the four subtrees extending from the four children of Xi. We continue to
divide the space in this manner until each record is represented by a node in the
quad tree. Figure 3.1 shows an example of the construction of a quad tree from
the data in Table 3.1.

Table 3.1 : Sample observation data (simplified).

Name Ria ht Ascens ion Declination
Algol 3 4 1
Altair 2 0 9
Bellatrix 5 6
Edasich 1 5 5 9
Regulus 1 0 1 2
Sheratan 2 2 1

The creation of the k-d tree differs slightly in that the point chosen from the
set of records is used to divide the space into two subspaces which determine

284

two subsets of the set.
each record is represented by a node in the k-d tree. Figure 3.2 depicts this

This process continues in alternating dimensions until

process.

(0, 60)

right ascension

Figure 3.1 : The structure of a quad tree.

We chose to store the IUE observation data in the internal nodes of the trees due
to the large number of records and the fact that deletions are not needed for our
application. If node deletions had been necessary, we would have chosen pseudo
quad trees and pseudo k-d trees for implementation.
data associated with points only at the leaf nodes of the tree providing the
means for a large number of efficient deletions and insertions [14].
observation catalog continues to grow as long as the satellite which supplies
its data continues to function.
insert a small number of observations after the completion of the trees, which
is possible and efficient at the leaf level if we allow a slight depth increase.

These structures store

An

For this reason we needed the capability to

Due to the nature of these data structures, we developed an object oriented
implementation in C++ [16]. The key structure in C++ is a user-defined type
called a class. In our application classes include such objects as nodes, lists of
nodes, trees, and regions in space. This object oriented approach is particularly
well-suited to this problem due to the hierarchical nature of these structures.

285

Another advantage of such an approach is the ability to create programs which
are concise, easy to understand, and highly maintainable.

-T- (3,411

right ascension

Figure 3.2: The structure of a k-d tree.

In order to minimize search times for the quad tree and k-d tree, we chose to
expend more effort in building the trees.
processing, we can optimize the trees through balancing. This is accomplished
by imposing the condition that for every node X i in the tree, every subtree of
that node may contain no more than half of the nodes whose root is Xi. This is
easily done by choosing the proper point in each observation subset when
placing nodes in the tree. At each step in the recursive process we must select
the median point in either dimension. Thus all remaining observations in that
subset will be equally divided with respect to the point chosen meeting the
condition that no subtree of the new node may contain more than half the nodes
in that subset.
tree of n nodes is the floor function of (log2 n) and the maximum total path
length is

By allowing more time for pre-

This optimization insures that the maximum path length in a

floor (log2 i) [6].
i

There are various quick algorithms for selecting the kth element of a set of n
elements and partitioning the set about that element. These provide efficient

286

methods of determining a median and implementing the process described above.
One algorithm due to C. A. R. Hoare (referenced in [2]) performs the task in O(n)
average time and is easy to implement. This allows us to create an optimized
tree in O(nlog2 n) time. We chose this algorithm for its simplicity and
efficiency. Another more complicated algorithm due to Floyd and Rivest uses
only n+k+o(n) comparisons and runs very quickly [7].

When we wish to create a tree, we use the standard C++ new command to
allocate a large block of virtual memory which will store the tree nodes. After
creating the tree from the data in an observation catalog, we can send all of the
information needed for rebuilding the tree to a file. This information includes
the right ascension and declination values, the primary keys of the database
relation, and the addresses of the children for each node in the tree. We
subtract the base-address from these addresses in order to save the general
tree structure which is independent of its location in memory. We can rebuild
the tree using this data by adding the node address values to the base-address
for a newly allocated block of memory.
time necessary for initially creating and balancing a tree is eliminated. Trees
are always readily available and efficiently recreated.

With this ability, the preprocessing

3.2 Spatial Queries

The simplest type of query which can be answered by searching a quad tree or a
k-d tree is what Knuth calls a "simple query" [lo]. This involves searching a
tree for a specific record using a point search based on the spatial data. A
simple algorithm performs the search by making a comparison at each node and
choosing the correct subtree for the next test. The average time required is
proportional to the total path length divided by the number of nodes in the tree
[6]. Thus no simple search will require more comparisons than the maximal path
length.

A more general type of spatial query is a "region query" [l o] in which we specify
a set with which records must intersect. This class of query might be invoked
by a question such as "List the primary keys of all observations with right
ascensions between 8 hours and 16 hours and declinations between 20 degrees
and 50 degrees." Figure 3.3 shows an example of such a region in space.

The conventional method of answering a rectangular region query by searching a
quad tree involves a recursive procedure [6]. An almost identical algorithm will
suffice for k-d trees [l].
of geometric figures such as the shape of a satellite camera aperture.

Similar procedures can be defined for different types

287

. .
?. - . .

. a
, _

., . i,, '
, . : .

i:

.
. .

. ' . .

x :,*-.
. .

~ _ _

24 22 20 18 18 14 12 10 8 6 4 2 0
Right Ucenaion

Figure 3.3: An example of a region to be searched.

The last type of query necessary for our application is a nearest neighbor query.
Given spatial coordinate values, it is often desirable to find the nearest
observation to that point. Bentley provides a complicated algorithm for
performing this process in k-d trees for which empirical tests show O(log2 n)
time [l]. A slight variation due to Friedman, Bentley, and Finkel was proven to
be O(log2 n) [8]. For simplicity, we implemented a more naive algorithm for
finding a nearest neighbor in either type of tree which relies on the region
search described above. Future empirical tests are planned in order to
determine the performance of our algorithm.

4 Natural Language Processing

There are a small number of commercially available natural language processing
packages. We have found DataTalker, by Natural Language incorporated, to be a
very powerful system for handling English queries. DataTalker can communicate
with most of the major database management systems. The user's query is
converted into the necessary database query language, the DBMS is invoked, and
DataTalker displays the query result to the user in a structured format. If
DataTalker is unable to parse the user's query, a message is generated
explaining why.
expressions, or consists of specialized vocabulary which DataTalker has not
been taught causes an error message to be produced.

A query that is syntactically incorrect, contains metaphorical

288

DataTalker must be configured to the domain. The person who does this
configuration must be familiar with both the domain and the structure and
contents of the database. We refer to this person as the domain expert.
Preferably, this person will have a list of questions that the user base might
ask.

Since we have had limited experience with DataTalker (this was our first use),
we aren't qualified to report on the amount of time it takes to configure the
system for some domain. However, we will note that the current version of
DataTalker (version 3.0) is much friendlier than its previous versions, and we
find that it is easy to build a configuration in incremental steps.

I

I 5 The Query Expert System

DataTalker was designed to be used solely interactively.
because many different systems could benefit from its capabilities if an
interface existed that allowed it to be included as a component. We found a
natural language interface was desirable for many of the domains with which
we were working, so we faced the choice of either circumventing DataTalker's
limitations, or designing our own natural language processing system. We
quickly adopted the former option, since the latter requires a long-term effort
into computational linguistics if a robust, mature system is sought [9,11].

This is unfortunate,

If a person submits a query to DataTalker that the system is unable to
understand, a short message is returned which may or may not indicate the
problem. The person is given immediate feedback and is expected to rephrase
his query so that the system can answer it, or abandon it because it is obviously
beyond the scope of DataTalker. If the system is able to parse the query, render
it in the necessary database query language, and successfully query the
database, then the result is returned to the user. In any case, the person quickly
realizes whether his query was handled properly.

I

When DataTalker realizes that it is unable to handle a query, it returns a brief
message indicating the problem, possibly preceded by its English interpretation
of the query. The message typically starts with a phrase such as "Sorry, ... ,'I

"The database contains no information on ... ," or "I don't know"

There is also a possibility that DataTalker misinterprets the user's query and
provides what it believes to be a correct answer, although in reality the answer
corresponds to a question different from the one the user asked.

289

The query expert system (QES) is a module we designed and implemented in LISP
which serves as an intelligent front-end to DataTalker.
query, transforms it according to a domain-specific rule base, and passes it on
to DataTalker. If DataTalker replies that it does not understand the query, then
QES packages the original query along with the transformations it underwent
and DataTalker's response, and files this. The domain expert periodically
reviews this file, and makes changes to the rule base, if possible, so that QES
can transform the problematic queries into queries that can be parsed by
DataTalker. This feature allows the system's performance to improve
throughout its lifetime.

It accepts the user's

5.1 The Textual Rule Base

The domain expert creates a text file that contains the rules and functions
which are used to transform the user's query prior to passing it to DataTalker.
The grammar for representing the textual rule base is shown in Figure 5.1.

<rule base> ::= <rule> <rule base> I <function> <rule base> I E
<rule> ::= <pattern> '==>I <transform> {<explanation>}
<pattern> ::= cpattern head> cpattern taib
<pattern heacb ::= <word> I enumber matchup I <word seb
<pattern taib ::= <pattern i t e m <pattern taib I E

cpattern i t e m ::= I. . . ' I <word> I <number matchup I cword seb
c word> ::= cascii character excluding whitespace>+
<number matchup ::= '#'{<digin}*
<word seb ::= '{I <word> <word lisb '1'
<word lisb ::= ',I <word> cword l isb I E

c transforms ::= <transform i t e m <transform> I <transform i t e m
<transform item> ::= <word> I <function calb
<function calb ::= <function n a m e '(I <parameter lisb I)'

<function name> ::= <letter> <asci character excluding whitespace>+
<parameter l isb ::= <number matchup <number matchup / ish
<number matchup lisb ::= ',' <number matchup <number matchup lisb I E

<function> ::= <function c a b I=' { <function body> I '(' <expression> ')I }
<function body, ::= { <condition> I,' <action> <carriage returrn }+ <blank line>+
<condition> ::= <simple comparison> I <condition> 'and' <condition>
<simple comparison> ::= <operand> <relational> <operand, { <relationab <operand> }
<operand> ::= <number matchup I <number>
<relational> ::= 'e' I I>' I k' I 'e=' I '>=I I 'e>'
<action> ::= I!' I { <word> I '(I <expression> I)' }+

expressiorn ::= <mathematical expression possibly involving parameters to function>

Figure 5.1 : The grammar for defining domain-specific rules and functions.

If DataTalker is unable to handle a query in one form, but can successfully
answer the same query when it is reworded, then one or more rules can be added
to the rule base so that QES can automatically transform the misunderstood

290

query prior to passing it to DataTalker. Application of a rule transformation
causes a portion of the query to be restructured, deleted or replaced by text
specified by the rule. QES continually applies its domain rules to the
successive renderings of the query until no rules are activated. The final form
of the query at this point is displayed to the user along with explanations of
why various transformations were used. The user must then consent that the
altered version of the query is the closest match between his original query and
the information directly obtainable from the database, or else the query is not
sent to DataTalker. If the user is unsatisfied with the way his query has been
altered, then he is allowed to file an electronic report stating his reasons.
This, along with the QES actions for the query, can later be reviewed by the
domain expert leading to possible enhancements to the rule base, or
clarification back to the user.

A query transformation rule consists of a pattern and the jransform which is to
occur given that the pattern is encountered in the query. An optional
explanat i o n can also be supplied with the rule. This explanation is displayed to
the user if this rule is used to alter his query.

A pattern is a series of pattern items. The possible pattern items are ...,
<word>, <number matchup>, and <word set>. The pattern item ... matches zero or
more consecutive words of the query. The item <word> must match the query
word exactly. A <number matchup> matches the query word if it is a number. A
cword s e b is a list of words, and a match occurs if any member of this set is
the same as the query word. An implicit ... starts and ends each pattern. Each
word in the query must be accounted for by some item of the pattern in order
for the pattern to match the query.
j , then the portion of the query matched by item i must directly precede the
portion of the query matched by item j . Figure 5.2 shows the match between a
query and a pattern.

In addition, if item i directly precedes item

QUERY show all the observations taken at the 2175 A bump
PATTERN: ... observations ... {at, of} the # A bump ...

Figure 5.2: The match-up between a query and a pattern.

In a rule, the transform describes how the query should be altered provided the
pattern matched it. A transform consists of a combination of one or more
function invocations or words. The substitutions in the query that occur depend
on the make-up of the transform. The ordering of words in the new query is
based on the pattern. All ... pattern items are incorporated unaltered into the
new form of the query. The left-most <word> pattern item that also occurs in
the transform is replaced by the entire transform in the new query. If the

29 1

transform consists solely of a function invocation, then the left-most number
in the pattern that is bound to one of the function's parameters is replaced by
the value returned when the function is evaluated. All other query words and
numbers that are matched to <word>, <word s e h , or <number matchup pattern
items are deleted. Figure 5.3 shows the effects of a rule firing on a query.

QUERY: how many observations were made at high resolution
RULE: observations ... {at, with} high resolution ==> high dispersion observations

tern Item

observations

{at, with}
high
resolution

...

...

Contrwion to New Query . . erv Word
how many how many
observations high dispersion observations
were made were made
at
high
resolution
E

NEW QUERY: how many high dispersion observations were made

Figure 5.3: How a rule alters the structure of a query.

The domain expert can also define functions that can be used in the rule's
transform. Figure 5.4 is one example of a function and a rule that uses that
function. A function definition consists of the function name, a list of its
parameters, and the function body. The body can be either a mathematical
expression or a collection of condition-action pairs. A function that is defined
as a straight mathematical function returns the result of evaluating that
function under the current function parameter bindings. If the body consists of
condition-action pairings, then i f a condition is found that holds true for the
given parameter bindings, the action is substituted in place of the function call
in the rule's transform. If an action has an expression embedded within it, that
part is replaced by its evaluated form. The cut action "!I* has special
significance.
conditions. If a condition holds whose action is "!", the rule which invoked this
function is not applied for the current situation.
that could both potentially fire for a given query, even though their results are
quite different. The cut ensures that the correct rule is applied.

Conditions whose action is "!" are evaluated prior to all other

Figure 5.5 shows two rules

When a <number matchup pattern item matches a number in the query, a binding
occurs such that all occurrences of that <number matchup token that appear in
the transform are replaced by the number it matched from the query. If more

292

RULE: observations ... at the # A bump ==> f(#) observations

f(#) = 1000 <= # < 1920, short wavelength
2000 < #, long wavelength
1920 <= # <= 2000, short wavelength or long wavelength
< 1000, I

Figure 5.4: An example of a rule which relies on an expert-defined function.
The rule does not apply if the <number matchup> token is bound to a value less

than 1000.

than one <number matchup item occurs in a rule's pattern, the <number
matchup> tokens should be distinct from one another. If the expert wants to
write a rule that fires only if, say, the same number appears twice in the query,
then the pattern should use two different <number matchup tokens, and the
transform should invoke some function which checks that the bindings of the
two tokens are equal in value.

RULE 1: observations ... at # A ==> f(#) observations
RULE 2: observations ... at # A ==> g(#) observations

f(#) = 1000 <= # < 1920, short wavelength
2000 e #, long wavelength
1920 <= # <= 2000, short wavelength or long wavelength
< 1000, I

g(#) = # < 4, high dispersion
>= 4, low dispersion
> 10, !

Querv >
show the observations taken at 1 A
show the observations taken at 1800 A

show the high dispersion observations (2)
show the short wavelength observations (1)

Figure 5.5: Use of a cut 'I!" can ensure the correct application of a rule.

5.2 Compiling the Rule Base

The textual rule base must be compiled before QES can use it. We have
developed a LISP module that parses and compiles the expert's rule base.
Compilation must occur any time the textual rule base is altered if QES is to
make use of these changes. Four structures are computed during compilation:
the rules, the functions, the word occurrences, and the rule thresholds.

Each rule is encoded as a list consisting of a unique rule number, the pattern and
the transform. The pattern is represented as a list of the pattern items, in
string format, where the <word seh pattern item is structured as a list of

293

strings. The transform is rendered as a list of its components. A function call
is stored as a list whose head element is the function name and whose
remaining elements are the parameters to be passed.

Each function is represented as a list consisting of the function name, a list of
its parameters, and an evaluatable LISP encoding of the function body. If
necessary, the condition-action pairings are reordered so that the potential
cuts are evaluated prior to the other clauses. If a mathematical expression
occurs in the function body, then code is generated which converts the result to
a string automatically so that it can be concatenated into the action or
template correctly. Figure 5.6 shows the encoding for one of the functions from

I Figure 5.5.

(I' f " (" #)
(cond ((< 'I#" 1000) "!")

((and (c= 1000 ' I #) (< "#'I 1920)) "short wavelength")
((c 2000 ' I #) "long wavelength")
((and (c= 1920 "#") (<= "#" 2000)) "short wavelength or long wavelength"))) I

Figure 5.6: The compiled form of an expert-supplied function. The function body
can be evaluated once the value for the parameter is substituted.

A word occurrence index is also computed and placed in the compiled rule base.
An element of this index consists of a word and a list of those rules in which
that word appears, and the number of times it appears in each of those rules
(only the rule's pattern is used, not its transform).
numbers, the element "#'I appears in the index along with a list of the rules
which contain numbers and the number of occurrences in each rule. An entry is
made for each word in a <word seh pattern item, whereas the ... pattern item is
ignored. The word occurrence index is used during run-time to increase the
speed of the inference engine.

Instead of indexing specific

The last structure that is placed in the compiled rule base is referred to as the
rule threshold list. An element of this list consists of a rule number and the
number of items in that rule's pattern, excluding ... pattern items. This list is
also used by the inference engine in its attempt to find the correct rule to
apply -

5.3 The Inference Engine: Applying the Rule Base

The QES inference engine uses the query to decide which rules are potentially
applicable for transforming it.
inferencing is referred to as forward chaining.

The method of using the data to drive the

294

The size of the rule set is most likely much larger than the number of words in
the user's query. The user would experience a noticeable wait if the inference
engine had to inspect each rule every time it was seeking to transform the
query. Also note that there are relatively few rules applicable to the query at
any given time. The inference engine must be implemented so that it minimizes
the number of rules it attempts to apply for a given query.

Each rule starts with a score of zero. A list is formed of the unique words that
are found in the query and their number of occurrences. Each word in turn is
taken from this list, and is used with the occurrence index to find those rules in
which it occurs. The score for each of these rules is incremented by one for
each time the word occurs in its pattern, not exceeding the number of times the
word occurs in the query.

All rules whose score equals or exceeds their rule threshold value are placed in
the conflict set. These are the rules that can potentially affect the given query
at this time. All the other rules cannot apply, either because the query is
shorter than their patterns, or their patterns contain one or more words which
are not in the query. The rules found in the conflict set may or may not apply.
Even though their patterns contain the appropriate words, the words could be in
a different order, or a function invocation in their transform could return a cut
y.

More than one rule in the conflict set may satisfy all the conditions for firing.
However, one rule may fit the circumstances better than another because it is
more specific [3]. To ensure that the "best" rule is found and applied as quickly
as possible, the rules in the conflict set are ordered according to their
specificity.
contains more items.
shorter patterns.
unsuccessfully applied.
and the conflict set must be recomputed anew.

A rule is considered more specific than another if its pattern
Rules with longer patterns are tried before ones with

A rule is automatically removed from the conflict set if it is
Once a rule is found that can fire, a new query exists,

In general, a given query undergoes a number of transformations until the
inference engine is unable to find any rules which can alter it. This is known as
a quiescent state and corresponds to an empty conflict set. Once this state is
achieved, the final form of the query is returned, it is displayed to the user, and
QES passes it to DataTalker. We must make sure that a quiescent state is
reached. In particular, we must guard against a collection of rules which
bounces the query back-and-forth. To remove the possibility of infinite looping,
the principle of refraction [12] is used. A rule is removed from the conflict set
if it has already been applied to the query in its current form.
infinite recursion accidentally was introduced to a rule base, only a handful of

Most likely, if

295

rules would be involved.
any number of rules.

This method of detecting infinite looping works for

6 Results

To test our spatial data management expert system, we have selected a subset
(about 5,000 records) of the IUE Minilog (about 70,000 records).
interviewing an astrophysicist who is an IUE expert, we developed a LISP
program that converted the magnetic IUE Minilog tape data into a file consisting
of the various fields available (e.g., right ascension) or computable (e.g.,
continuum level) for each observation.1 The resulting file of IUE observations
was ingested into Sybase, a commercial DBMS available from Sybase, Inc. [17].

After

DataTalker was configured as far as possible on the IUE domain, and a rule base
for QES was generated which contains about 50 rules, some of which have been
used as examples throughout this paper. Figure 6.1 contains a list of some of
the questions our system can answer, where italics indicates that QES performs
some modification to that part of the query before it is passed to DataTalker.

What observations of HD1 12244 have been taken?
What high dispersion IUE observations of HR4908 have been taken?
What observations around 1260 A have been taken of CPD -56 5498?
What observations of 0-stars have been made at 0. 1 A resolution at 2600 A?
What low dispersion Observations have background levels larger then [sic] 100 DN and continum

What low dispersion observations have been made from 1150 - 3000 A?
[sic] levels less than 220 DN?

Figure 6.1: Actual user queries that can be successfully answered by our spatial
data management expert system. Italicized portions of the query are

modified by QES prior to being passed to DataTalker.

By using our region selection and spatial search modules, any of the questions
can be restricted to a smaller portion of the database. We believe this
increases the speed of the system because our method of performing the spatial
search is significantly faster than relational database search methods that use
non-spatial primary keys to construct their trees. The quad and k-d trees take
full advantage of the numerical properties inherent in the spatial data, whereas
the trees constructed by DBMS's must be searched entirely to retrieve all
records which meet some spatial criteria. Our spatial data management expert

1 We are currently developing a method to perform this database conversion process automatically so
that a domain expert can do it without requiring a programmer to help. A lot of computation can be
saved, and more interesting questions can be answered, if the database is structured with respect to the
types of questions the users ask.

296

system presents a list of the primary keys to the DBMS immediately, thus
eliminating the need for the database to be exhaustively searched.

7 Future Research

This is the first large scale domain-independent spatial query management
expert system that we have built. There are many research topics to be
examined as we continue to develop our system to meet the users' needs. We
mention some major areas for improvements or further investigation.

As mentioned earlier in the paper, our nearest neighbor search algorithm
requires empirical testing, and, as it is a naive approach to the problem, a
faster yet more complicated solution may need to be implemented.

We would like to examine the search speeds that result for a variety of
tree structures. Currently, our trees contain about 5,000 observations.
We would like to run tests on trees that contain all the observations in
the IUE Minilog (about 70,000 records).

To show the domain-independent nature of our approach, we will be
constructing rule bases for other catalogs from a variety of different
satellite observations.

It would be useful if a library of successfully handled queries were
maintained so that if a rule base is altered, the previously correctly
handled queries can be rerun to ensure that a fix does not introduce a new
error where there once was no problem.
expert system building tools, such as EMYCIN [5,18].

This utility exists in various

We will likely be moving our interface from the Suntools environment to
the more portable X-Windows system.

8 Summary and Conclusions

The spatial data management expert system is a large scale domain-independent
system that serves as an intelligent front-end to databases containing spatial
data. There are two major components to the system:

The first is a spatial search module which uses the spatial component of the
data in the database to produce a tree which contains the primary keys of all
the records in the database. The spatial tree is indexed by the spatial part of
a user's query, and a list is returned of all the primary keys that point to

297

records meeting that spatial criteria. We find that the time required to
process a user's query is reduced dramatically, compared with the time
needed by a DBMS that must necessarily search its entire database to
discover which records satisfy the user's spatial demands.

The second is a domain-independent query expert system (QES) that uses a
domain-specific rule base to preprocess the user query, effectively mapping
a broad class of queries into a smaller set that is manageable by a
commercial natural language processing product. QES uses a forward-
chaining inference engine that relies on the specificity of the rules and an
indexing scheme to achieve a quiescent state rapidly, thus transforming the
user's English query into a form that can be handled by DataTalker.

This system is a step toward automatically building intelligent user interfaces
for the large, non-homogeneous databases that exist today and are being planned
for the future. We feel we have shown that the techniques we have used can be
incorporated into working application systems immediately. Systems which
force users to use specialized database query languages to access any data
should be rethought.

I
Acknowledgements

We would like to thank Dr. Michael Van Steenberg (National Research Council)
for helping us with the IUE Minilog, providing us with sample user queries, and
assuring us of the existence of a user base that needs this type of system. We
are indebted to Craig Goettsche, of Science Applications Research (SAR), for
tackling Suntools and implementing the region selection module and a help
module. David Kortenkamp, currently a graduate student at the University of
Michigan, helped design and implement some of the spatial search module during
his summer internship with SAR.
Campbell (NASA/GSFC), Scott Wattawa (NASA/GSFC), Scott Hill (SAR), Nicholas
Short, Jr. (NASA/GSFC) and Larry Roelofs (Computer Technology Associates) for
their discussions and inputs into this research.

Finally, we would like to thank William

References

[1] Bentley, J. L., Multidimensional binary search trees used for associative searching,
Communications of the ACM, 18 9, 509-51 7, September 1975.

[2] Bentley, J. L., Programming pearls, Communications of the ACM, 28 11, 1121-1 127, 1985.

298

Brownston, L., E. Kant, R. Farrell and N. Martin, Programming Expert Systems in OPS5.
Reading, Massachusetts: Addison-Wesley, 1985.

Campbell, W., N. Short, Jr., L. Roelofs and S. Wattawa, The intelligent user interface for NASA's
advanced information management systems, Third Conference on Artificial Intelligence for Space
Applications, Part /I, 1987.

Davis, R. and D. B. Lenat, Knowledge-based Systems in Artificial Intelligence, New York:
McGraw Hill, 1982.

Finkel, R. A., and Bentley, J. L. , Quad trees: a data structure for retrieval on composite keys,
Acta lnformatica, 4, 1-9, 1974.

Floyd, R. W. and Rivest, R. L., Expected time bounds for selection, Communications of the ACM,

Friedman, J. H., Bentley, J. L., and Finkel, R. A., An algorithm for finding best matches in
logarithmic time, Stanford CS Report, 75-482.

Hendrix, G. G., E. D. Sacerdoti, D. Sagalowicz and J. Slocum, Developing a natural language
interface to complex data, ACM Trans. on Database Systems, 3 2, 105-1 47, 1978.

Knuth, D. E., The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley
Publishing Company, 1973.

Martin, P., D. AppeIt and F. Pereira, Transportability and generality in a natural-language
interface system, Proceedings of the Eighth international Joint Conference on Artificial
Intelligence, 573-581, Los Altos: William Kaufmann, Inc., 1983.

McDermott, J. and C. Forgy, Production system conflict resolution strategies, in D. A. Waterman
and F. Hayes-Roth (eds.), Pattern-Directed Inference Systems, New York: Academic Press,
1978.

Natural Language Incorporated, Natural language database retrieval system, version 3.0,
Natural Language Incorporated, Berkeley, CA, 1988.

Overmars, Mark H., and van Leeuwen, J., Dynamic multi-dimensional data structures based on
quad- and k-d trees, Acta Informatica, 17, 267-285, 1982.

Short, N. Jr. and S. L. Wattawa, The second generation intelligent user interface for the crustal
dynamics data information system, Telematics and Informatics, 5 3, 253-268, 1988.

Stroustrup, B., The C++ Programming Language, Addison-Wesley Publishing Company, 1986.

Sybase Inc., Sybase database management, Sybase, Inc., Berkeley, CA, 1987.

van Melle, W., A domain-independent system that aids in constructing knowledge-based
consultation programs, Ph.D. dissertation, Stanford University, 1980.

18 3, 165-172, 1975.

299

